Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling.
نویسندگان
چکیده
The inhibitory reversible oxidation of protein tyrosine phosphatases (PTPs) is an important regulatory mechanism in growth factor signaling. Studies on PTP oxidation have focused on pathways that increase or decrease reactive oxygen species levels and thereby affect PTP oxidation. The processes involved in reactivation of oxidized PTPs remain largely unknown. Here the role of the thioredoxin (Trx) system in reactivation of oxidized PTPs was analyzed using a combination of in vitro and cell-based assays. Cells lacking the major Trx reductase TrxR1 (Txnrd1(-/-)) displayed increased oxidation of PTP1B, whereas SHP2 oxidation was unchanged. Furthermore, in vivo-oxidized PTP1B was reduced by exogenously added Trx system components, whereas SHP2 oxidation remained unchanged. Trx1 reduced oxidized PTP1B in vitro but failed to reactivate oxidized SHP2. Interestingly, the alternative TrxR1 substrate TRP14 also reactivated oxidized PTP1B, but not SHP2. Txnrd1-depleted cells displayed increased phosphorylation of PDGF-β receptor, and an enhanced mitogenic response, after PDGF-BB stimulation. The TrxR inhibitor auranofin also increased PDGF-β receptor phosphorylation. This effect was not observed in cells specifically lacking PTP1B. Together these results demonstrate that the Trx system, including both Trx1 and TRP14, impacts differentially on the oxidation of individual PTPs, with a preference of PTP1B over SHP2 activation. The studies demonstrate a previously unrecognized pathway for selective redox-regulated control of receptor tyrosine kinase signaling.
منابع مشابه
Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H2O2 exposure.
Regulation of growth factor signaling involves reversible inactivation of protein tyrosine phosphatases (PTPs) through the oxidation and reduction of their active site cysteine. However, there is limited mechanistic understanding of these redox events and their co-ordination in the presence of cellular antioxidant networks. Here we investigated interactions between PTP1B and the peroxiredoxin 2...
متن کاملProtein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene ...
متن کاملChronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B.
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphata...
متن کاملReceptor Tyrosine Kinase Inhibitory Activities and Molecular Docking Studies of Some Pyrrolo[2,3-d]pyrimidine Derivatives
In this study, we aimed to determine VEGFR-2, EGFR and PDGFR-β tyrosine kinase inhibitory activities of some pyrrolo[2,3-d]pyrimidine derivatives previously synthesized and showed potent cytotoxic and apoptotic effects against several cancer cell lines by our group and to evaluate the relationships between inhibitory activities and binding properties of the active compounds by molecular docking...
متن کاملThiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases.
Protein tyrosine phosphatases (PTPs) play an important role in the regulation of mammalian signal transduction. During some cell signaling processes, the generation of endogenous hydrogen peroxide inactivates selected PTPs via oxidation of the enzyme's catalytic cysteine thiolate group. Importantly, low-molecular weight and protein thiols in the cell have the potential to regenerate the catalyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 33 شماره
صفحات -
تاریخ انتشار 2013